Implications of stress concentrators and work hardening in flat tensile samples subjected to milling and abrasive water jet machining

Author:

Buglioni Luciano,Krahmer Daniel Martínez,Sánchez Egea AntonioORCID,Simoncelli Alejandro

Abstract

AbstractThe milling process is the standard method for producing flat tensile test specimens from sheet metal. However, alternative methods employed in the industry for cutting sheet metal include abrasive water jet cutting, laser cutting, punching, and, to a lesser extent, electrical discharge machining. Among these, abrasive water jet cutting stands out for its superior material integrity, versatility, precision, and efficiency, making it a preferred choice. Previous studies consistently show that specimens cut by abrasive water jetting exhibit lower ultimate tensile strength and higher percent elongation than those obtained by milling in standardized tensile tests. This study investigates this behavior across different types of steel and alloys. Both steel types were subjected to milling and water jetting processes, followed by an analysis of their experimental and simulated mechanical behavior to identify discrepancies between the two methods. The findings suggest that milling, influenced by factors such as feed per tooth and cutter diameter, introduces geometric stress concentrators. This relative increase in ultimate tensile strength and decrease in percent elongation are observed consistently in milled tensile specimens compared to those cut by water jet, regardless of material type or thickness. Additionally, the effects of perimeter hardening resulting from superficial plastic deformation caused by the cutting edge, likely due to its small thickness, do not influence the observed trends significantly.

Funder

Departament d'Universitats, Recerca i Societat de la Informació

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3