Strengthened Oxygen Oxidation of Ferrous Ions by A Homemade Venturi Jet Microbubble Generator towards Iron Removal in Hydrometallurgy

Author:

Fu Xinzhuang,Niu Zhen,Lin Min,Gao Ya,Sun Wei,Yue TongORCID

Abstract

Iron normally exists in the form of ferrous ion (Fe2+) in primary ore deposits of valuable metals. To remove iron from hydrometallurgical leaching solution or suspension by precipitation, ferrous ion should be oxidized to ferric ion (Fe3+) first. Due to the low oxidation rate of Fe2+ by the traditional oxygen oxidation method, industry has to use more agitating barrels, steam, and compressed gas, as well as a larger workshop area, which dramatically increases the equipment investment and operation costs. In this study, a strengthened oxygen oxidation method for Fe2+ using a homemade venturi jet microbubble generator is proposed. Microbubbles of air, oxygen, or oxygen-enriched air can be formed in the leaching solution or suspension, which can greatly improve the dissolved oxygen content in the solution and increase the gas-liquid contact area, thereby accelerating the oxygen oxidation rate of Fe2+ to Fe3+ and realizing the rapid iron removal of the leaching solution or suspension. By measuring the residual concentration of Fe2+ in the solution after oxidation reaction, it was found that the pump power, solution temperature, pH, concentration of Cu2+, and solution flow rate had great effects on the oxidation performance of the produced microbubble. By analyzing the images of the microbubbles and measuring the dissolved oxygen content in the solution, it is confirmed that the accelerated oxidation reaction rate of Fe2+ using the new proposed method was mainly due to the increase of the dissolved oxygen amount in the solution. Moreover, this method can significantly increase the purification depth of iron ion, expand production capacity, and decrease energy consumption.

Funder

National Key Scientific Research Project of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3