Numerical Simulation of Air–Water–Flake Graphite Triple-Phase Flow Field in a Homemade Double-Nozzle Jet Micro-Bubble Generator

Author:

Dong Xing1,Guo Chenhao2,Peng Deqiang3,Jiang Yun2

Affiliation:

1. School of Mechanical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

2. School of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

3. School of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

Abstract

The essential part of the flake graphite flotation apparatus is a micro-bubble generator. Developing a micro-bubble generator with a reasonable structure and superior self-absorption performance is crucial to improving flake graphite sorting. In this study, to realize the integrated treatment of the grinding and mineralization of flake graphite, the development and manufacturing of a double-nozzle jet micro-bubble generator were based on the concepts of shear-type cavitation water jets and jet pumps, among other theories. A numerical simulation of the air–water–flake graphite triple-phase flow field of the generator was conducted using the CFD method. The goal was to investigate the grinding and mineralization process of flake graphite by analyzing the distribution of the air phase’s volume percentage and the speed distribution of the air–water–flake graphite triple-phase flow field. The findings indicate that the air-phase volume percentage produced by the generator ranges from 98.3% to 99.9%, and the air-phase volume percentage is evenly distributed within the steady flow tube, achieving the mineralization function. Additionally, the flake graphite particles are dissociated from the flake graphite under the combined effect of friction shear and cavitation of the internal nozzles, thereby achieving the grinding function.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3