A Machine Condition Monitoring Framework Using Compressed Signal Processing

Author:

Rani MeenuORCID,Dhok Sanjay,Deshmukh Raghavendra

Abstract

The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist sampling techniques is costly in terms of power consumption, as it generates lots of data that need to be processed. To overcome this issue, compressive sensing (CS) can be employed, which directly acquires the signal in compressed form and hence reduces power consumption. The compressive measurements so generated can easily be transmitted to the base station and the original signal can be recovered there using CS reconstruction algorithms to diagnose the faults. However, the CS reconstruction is very costly in terms of computational time and power. Hence, this conventional CS framework is not suitable for diagnosing the machinery faults in real time. In this paper, a bearing condition monitoring framework is presented based on compressed signal processing (CSP). The CSP is a newer research area of CS, in which inference problems are solved without reconstructing the original signal back from compressive measurements. By omitting the reconstruction efforts, the proposed method significantly improves the time and power cost. This leads to faster processing of compressive measurements for solving the required inference problems for machinery condition monitoring. This gives a way to diagnose the machinery faults in real-time. A comparison of proposed scheme with the conventional method shows that the proposed scheme lowers the computational efforts while simultaneously achieving the comparable fault classification accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3