The Braking-Pressure and Driving-Direction Determination System (BDDS) Using Road Roughness and Passenger Conditions of Surrounding Vehicles

Author:

Jeong YiNa,Son SuRak,Lee ByungKwan,Lee SuHee

Abstract

A fully autonomous vehicle must ensure not only fully autonomous driving but also the safety and comfort of its passengers. However, the self-driving technology that is currently completed focuses only on perfect driving and does not guarantee the safety and comfort of passengers. This paper proposes a braking-pressure and driving-direction determination system (BDDS), which computes the brake pressure and steering angle optimized for passenger safety by utilizing more diverse information than existing autonomous vehicles. The BDDS proposed in this paper consists of two modules. The road roughness classification module (RRCM) classifies the roughness of the road by using the pressure data applied to the suspension and the K-NN algorithm and computes the optimal brake pressure. The passenger recognition and sharing module (PRSM) identifies the current occupant status of the vehicle by using a body pressure sensor and CNN, shares the information with surrounding vehicles, and computes the optimal steering angle using passenger information and road information. As a result of the simulations described in this paper, the parameters of AI models were optimized. In addition, the RRCS was about 7% more accurate than the K-means clustering algorithm, and PRS was about 9% more accurate than the existing seat recognition system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. The Autonomous Car: A Diverse Array of Sensors Drives Navigation, Driving, and Performancehttps://www.mouser.com/applications/autonomous-car-sensors-drive-performance/

2. Autonomous Vehicles: What Are the Security Risks?https://www.covisint.com/blog/autonomous-vehicles-what-are-the-security-risks/

3. Diagnosis and Repair for Autonomous Vehicleshttp://www.freepatentsonline.com/8874305.html

4. Can driving condition prompt systems improve passenger comfort of intelligent vehicles? A driving simulator study

5. Icy roads and urban environments. Passenger experiences in autonomous vehicles in Finland

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3