Author:
Xu Ningke,Wang Xiangqian,Meng Xiangrui,Chang Haoqian
Abstract
In this study, to further improve the prediction accuracy of coal mine gas concentration and thereby preventing gas accidents and improving coal mine safety management, the standard whale optimisation algorithm’s (WOA) susceptibility to falling into local optima, slow convergence speed, and low prediction accuracy of the single-factor long short-term memory (LSTM) neural network residual correction model are addressed. A new IWOA-LSTM-CEEMDAN model is constructed based on the improved whale optimisation algorithm (IWOA) to improve the IWOA-LSTM one-factor residual correction model through the use of the complete ensemble empirical model decomposition with adaptive noise (CEEMDAN) method. The population diversity of the WOA is enhanced through multiple strategies and its ability to exit local optima and perform global search is improved. In addition, the optimal weight combination model for subsequence is determined by analysing the prediction error of the intrinsic mode function (IMF) of the residual sequence. The experimental results show that the prediction accuracy of the IWOA-LSTM-CEEMDAN model is higher than that of the BP neural network and the GRU, LSTM, WOA-LSTM, and IWOA-LSTM residual correction models by 47.48%, 36.48%, 30.71%, 27.38%, and 12.96%, respectively. The IWOA-LSTM-CEEMDAN model also achieves the highest prediction accuracy in multi-step prediction.
Funder
National Natural Science Foundation of China
Academic Funding Projects for Top Talents in Disciplines and Majors of Anhui
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献