Author:
Xu Yonghui,Meng Ruotong,Zhao Xi
Abstract
Machine learning algorithms play an important role in the detection of toxic, flammable and explosive gases, and they are extremely important for the study of mixed gas classification and concentration prediction methods. To solve the problem of low prediction accuracy of gas concentration regression prediction algorithms, a gas concentration prediction algorithm based on a stacking model is proposed in the current research. In this paper, the stochastic forest, extreme random regression tree and gradient boosting decision tree (GBDT) regression algorithms are selected as the base learning devices and use the stacking algorithm to take the output of each base learning device as input to train a new model to produce a final output. Through the stacking model, the grid search algorithm is studied to automatically optimize the parameters so that the performance of the entire system can reach the optimal parameters. Through experimental simulation, the gas concentration prediction algorithm based on stacking model has better prediction effect than other integrated frame algorithms and the accuracy of mixed gas concentration prediction is improved.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献