Research of Post Injection Strategy of an EGR Diesel Engine to Improve Combustion and Particulate Emissions Performance: Application on the Transient Operation

Author:

Feng Shuang,Hong Wei,Yao YongmingORCID,You Tian

Abstract

Mobile source emissions have already accounted for a large proportion of environmental pollution, which seriously affect the symmetric characteristics of atmosphere, and automobile emissions have extremely serious deterioration of emissions under transient operation, especially particulate emissions. These factors exacerbate the asymmetry of the environment. So, the paper reports an experiment about the improvement of post injection strategy on combustion, regulated emissions (HC, CO, and NOx), and particle number emissions especially the emissions of different size particles in the transient process of an EGR diesel engine, meanwhile, the effects of post injection on the combustion of mixture are further analyzed by numerical simulation method. The test speed was 1600 r/min, and the torque increased from 5% of the maximum torque to 100%. The results indicated that the shorter the instantaneous loading time, the more severe the deterioration of particulate emissions, HC and CO emissions, but loading time has little effect on NOx emissions. The particles with the size range of 50–100 nm, 23–50 nm, and >100 nm are greatly affected by the loading process and post injection. In comparison, it has little effect on ultrafine particles with particle size of 15–23 nm and <15 nm. With the amount of post injection increased, the in-cylinder disturbance increased, and the oxygen-rich area in cylinder increased, the particle number concentration first decreased and then slightly increased. When the amount of post injection fuel is 2 mg and the main-post injection interval is 2000 us, the effects of suppressing particulate emissions are the best, for the 50–100 nm and >100 nm particles, the peak number concentration can be reduced by 25% and 50%, respectively. Due to the turbo charging lag, the peak of NOx emissions during the unloading process were slightly larger than the loading process.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3