Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images

Author:

Waqar MirzaORCID,Sukmawati Rahmi,Ji YaqiORCID,Sri Sumantyo Josaphat

Abstract

This paper was aimed at estimating the forest aboveground biomass (AGB) in the Central Kalimantan tropical peatland forest, Indonesia, using polarimetric parameters extracted from RadarSAT-2 images. Six consecutive acquisitions of RadarSAT-2 full polarimetric data were acquired and polarimetric parameters were extracted. The backscattering coefficient ( σ o ) for HH, HV, VH, and VV channels was computed respectively. Entropy (H) and alpha ( α ) were computed using eign decomposition. In order to understand the scattering behavior, Yamaguchi decomposition was performed to estimate surface scattering ( γ s u r f ) and volume scattering ( γ v o l ) components. Similarly following polarimetric indices were computed; Biomass Index (BMI), Canopy Structure Index (CSI), Volume Scattering Index (VSI), Radar Vegetation Index (RVI) and Pedestal Height ( p h ). The PolSAR parameters were evaluated in terms of their temporal consistency, inter-dependence, and suitability for forest aboveground biomass estimation across rainy and dry conditions. Regression analysis was performed between referenced biomass measurements and polarimetric parameters; VSI, H, RVI, p h , and γ v o l were found significantly correlated with AGB. Biomass estimation was carried out using significant models. Resultant models were validated using field-based AGB measurements. Validation results show a significant correlation between measured and referenced biomass measurements with temporal consistency over the acquisition time period.

Funder

Canadian Space Agency

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference48 articles.

1. Global Forest Resources Assessment 2010: Options And Recommendations for a Global Remote Sensing Survey of Forests;Ridder,2007

2. Living Planet Report 2018;Barrett,2018

3. Conserving Southeast Asian forest biodiversity in human-modified landscapes

4. Tropical Deforestation and Global Warming

5. Forest biomass and the science of inventory from space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3