Inversion of Forest above Ground Biomass in Mountainous Region Based on PolSAR Data after Terrain Correction: A Case Study from Saihanba, China

Author:

Nie Yonghui1ORCID,Hu Yifan1,Sa Rula1,Fan Wenyi1

Affiliation:

1. Key Laboratory of Sustainable Forest Ecosystem Management (Ministry of Education), School of Forestry, Northeast Forestry University, Harbin 150040, China

Abstract

Accurate retrieval of forest above ground biomass (AGB) based on full-polarization synthetic aperture radar (PolSAR) data is still challenging for complex surface regions with fluctuating terrain. In this study, the three-step process of radiometric terrain correction (RTC), which includes polarization orientation angle correction (POAC), effective scattering area correction (ESAC), and angular variation effect correction (AVEC), is adopted as the technical framework. In the ESAC stage, a normalized correction factor is introduced based on local incidence angle and radar incidence angle to achieve accurate correction of PolSAR data information and improve the inversion accuracy of forest AGB. In order to verify the validity and robustness of this research method, the full-polarization SAR data of ALOS-2 and the ground measured AGB data collected in the Saihanba research area in 2020 were used for experiments. Our findings revealed that in the ESAC phase, the introduction of the normalized correction factor can effectively eliminate the ESA phenomenon and improve the correlation coefficients of the backscatter coefficient and AGB. Taking the data of 25 July 2020 as an example, ESAC increases the correlation coefficients between AGB and the backscattering coefficients of HH, HV, and VV polarization channels by 0.343, 0.296, and 0.382, respectively. In addition, the RTC process has strong robustness in different AGB statistical models and different date PolSAR data.

Funder

National Natural Science Foundation of China

Civil Aerospace Technology Advance Research Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3