Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data

Author:

Fang Qiang1ORCID,Ibarra-Castanedo Clemente1ORCID,Garrido Iván2ORCID,Duan Yuxia3,Maldague Xavier1ORCID

Affiliation:

1. Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada

2. GeoTECH Group, Department of Natural Resources and Environmental Engineering, CINTECX, Universidade de Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain

3. School of Physics and Electronics, Central South University, 932 Lushan South Road, Changsha 410083, China

Abstract

Infrared thermography (IRT), is one of the most interesting techniques to identify different kinds of defects, such as delamination and damage existing for quality management of material. Objective detection and segmentation algorithms in deep learning have been widely applied in image processing, although very rarely in the IRT field. In this paper, spatial deep-learning image processing methods for defect detection and identification were discussed and investigated. The aim in this work is to integrate such deep-learning (DL) models to enable interpretations of thermal images automatically for quality management (QM). That requires achieving a high enough accuracy for each deep-learning method so that they can be used to assist human inspectors based on the training. There are several alternatives of deep Convolutional Neural Networks for detecting the images that were employed in this work. These included: 1. The instance segmentation methods Mask–RCNN (Mask Region-based Convolutional Neural Networks) and Center–Mask; 2. The independent semantic segmentation methods: U-net and Resnet–U-net; 3. The objective localization methods: You Only Look Once (YOLO-v3) and Faster Region-based Convolutional Neural Networks (Fast-er-RCNN). In addition, a regular infrared image segmentation processing combination method (Absolute thermal contrast (ATC) and global threshold) was introduced for comparison. A series of academic samples composed of different materials and containing artificial defects of different shapes and nature (flat-bottom holes, Teflon inserts) were evaluated, and all results were studied to evaluate the efficacy and performance of the proposed algorithms.

Funder

NSERC DG program

Chinese Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3