Printed circuit board solder joint quality inspection based on lightweight classification network

Author:

Zhang Zhicong1,Zhang Wenyu2,Zhu Donglin3,Xu Yi1,Zhou Changjun3ORCID

Affiliation:

1. College of Science Dalian Minzu University Dalian China

2. Department of Information Science and Engineering Ocean University of China Qingdao China

3. College of Mathematics and Computer Science Zhejiang Normal University Jinhua China

Abstract

AbstractSolder joint quality inspection is a crucial step in the qualification inspection of printed circuit board (PCB) components, and efficient and accurate inspection methods will greatly improve its production efficiency. In this paper, we propose a PCB solder joint quality detection algorithm based on a lightweight classification network. First, the Select Joint segmentation method was used to obtain the solder joint information, and colour space conversion was used to locate the solder joint. The mask method, contour detection, and box line method were combined to complete the extraction of solder joint information. Then, by combining the respective characteristics of convolutional neural network and Transformer and introducing Cross‐covariance attention to reduce the computational complexity and resource consumption of the model and evenly distribute the global view mutual information in the whole training process, a new lightweight network model MobileXT is proposed to complete defect classification. Only 16.4% of the Vision Transformer computing resources used in this model can achieve an average accuracy improvement of 31%. Additionally, the network is trained and validated using a dataset of 1804 solder joint images constructed from 93 PCB images and two external datasets to evaluate MobileXT performance. The proposed method achieves more efficient localization of the solder joint information and more accurate classification of weld joint defects, and the lightweight model design is more appropriate for industrial edge device deployments.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3