Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium

Author:

Stracquadanio Claudia,Quiles Juan ManuelORCID,Meca Giuseppe,Cacciola Santa OlgaORCID

Abstract

Trichoderma spp. are known as biocontrol agents of fungal plant pathogens and have been recognized as a potential source of bioactive metabolites. The production of antimicrobial substances from strains T. atroviride (TS) and T. asperellum (IMI 393899) was investigated. The bioactivity of 10- and 30-day culture filtrate extracted with ethyl acetate was assessed against a set of pathogenic fungi and oomycetes. The 30-day extracts of both strains had significant cytotoxic effects against the tested pathogens, with values of minimum fungicidal concentration (MFC) ranging between 0.19 and 6.25 mg/mL. Dual culture assay (direct contact and nondirect contact) and the percentage inhibition of radial growth (PIRG) was calculated. The highest PIRG values were 76% and 81% (direct contact) with IMI 393899 and TS, respectively. Nondirect contact does not show inhibition on any of pathogens tested, indicating that the inhibition is not due to the secretion of volatile substances. Culture filtrates were analyzed by GC-MS and HPLC-Q-TOF-MS for the identification of volatile organic compounds (VOCs) and nonvolatile organic compounds (nVOCs), respectively. Seven classes of VOCs and 12 molecules of nVOCs were identified. These results indicate that these strains of Trichoderma had antimicrobial activities and they are potential natural sources of compounds with biological activity.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference51 articles.

1. Environmental Risks of Fungicides Used in Horticultural Production Systems;Wightwick,2010

2. The Role of Microorganisms in Mediating and Facilitating the Uptake of Plant Nutrients from Soil;Tinker,1984

3. Fungicide Resistance: The Assessment of Risk;Brent,1998

4. Commercialization and Implementation of Biocontrol

5. Trichoderma species — opportunistic, avirulent plant symbionts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3