Using Downscaled GRACE Mascon Data to Assess Total Water Storage in Mississippi Alluvial Plain Aquifer

Author:

Ghaffari Zahra12ORCID,Easson Greg12,Yarbrough Lance D.1ORCID,Awawdeh Abdel Rahman3,Jahan Md Nasrat12,Ellepola Anupiya1ORCID

Affiliation:

1. Department of Geology & Geological Engineering, University of Mississippi, University, MS 38677, USA

2. Mississippi Mineral Resources Institute, University of Mississippi, University, MS 38677, USA

3. Department of Civil & Environmental Engineering, University of Mississippi, University, MS 38677, USA

Abstract

The importance of high-resolution and continuous hydrologic data for monitoring and predicting water levels is crucial for sustainable water management. Monitoring Total Water Storage (TWS) over large areas by using satellite images such as Gravity Recovery and Climate Experiment (GRACE) data with coarse resolution (1°) is acceptable. However, using coarse satellite images for monitoring TWS and changes over a small area is challenging. In this study, we used the Random Forest model (RFM) to spatially downscale the GRACE mascon image of April 2020 from 0.5° to ~5 km. We initially used eight different physical and hydrological parameters in the model and finally used the four most significant of them for the final output. We executed the RFM for Mississippi Alluvial Plain. The validating data R2 for each model was 0.88. Large R2 and small RMSE and MAE are indicative of a good fit and accurate predictions by RFM. The result of this research aligns with the reported water depletion in the central Mississippi Delta area. Therefore, by using the Random Forest model and appropriate parameters as input of the model, we can downscale the GRACE mascon image to provide a more beneficial result that can be used for activities such as groundwater management at a sub-county-level scale in the Mississippi Delta.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3