Oral Exposure to Tributyltin Induced Behavioral Abnormality and Oxidative Stress in the Eyes and Brains of Juvenile Japanese Medaka (Oryzias latipes)

Author:

Shi Yanhong,Chen Chen,Li Ming,Liu Lei,Dong Kejun,Chen Kun,Qiu Xuchun

Abstract

The widely used compound tributyltin (TBT), which can be continuously detected in aquatic species and seafood, may induce diverse adverse effects on aquatic organisms. However, little is known regarding the mechanistic links between behavioral abnormality and oxidative stress in different fish tissues in response to oral TBT exposure. Herein, juvenile Japanese medaka (Oryzias latipes) were orally exposed to TBT at 1 and 10 ng/g-bw/d for four weeks. After exposure, the locomotor activity and social interaction of juvenile medaka were found to be significantly reduced in the 10 ng/g-bw/d TBT-exposed group. Furthermore, the antioxidant biomarkers in different tissues of juvenile medaka showed different levels of sensitivity to TBT exposure. The eye superoxide dismutase (SOD) activities markedly increased in both groups exposed to 1 and 10 ng/g-bw/d TBT, while the eye and brain malondialdehyde (MDA) levels increased in the higher dose group. Furthermore, the eye and brain ATPase activities markedly declined in the 1 ng/g-bw/d TBT-exposed group. A correlation analysis revealed that the decreased locomotor activity and social interaction in medaka were associated with the eye antioxidant enzyme (i.e., SOD and catalase (CAT)) activity and brain oxidative damage level. Thus, our findings suggested that there might be some mechanistic links between the behavioral abnormality induced by TBT exposure and oxidative stress in the eyes and brains of medaka. Thus, our findings indicate that the impacts of oral exposure to TBT should be considered to better assess its risk to the aquatic ecosystem and human health.

Funder

cooperative research program of the Jiangsu Provincial Double-Innovation Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3