ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio)

Author:

Jin Liang1ORCID,Wang Sijing2,Chen Chen2,Qiu Xuchun23,Wang Chong-Chen4

Affiliation:

1. Key Laboratory of Estuarine Ecological Security and Environmental Health, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China

2. Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

3. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China

4. Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are typical metal–organic framework (MOF) materials and have been intensively studied for their potential application in drug delivery and environmental remediation. However, knowledge of their potential risks to health and the environment is still limited. Therefore, this study exposed female and male zebrafish to ZIF-8 NPs (0, 9.0, and 90 mg L−1) for four days. Subsequently, variations in their behavioral traits and brain oxidative stress levels were investigated. The behavioral assay showed that ZIF-8 NPs at 90 mg/L could significantly decrease the locomotor activity (i.e., hypoactivity) of both genders. After a ball falling stimulation, zebrafish exposed to ZIF-8 NPs (9.0 and 90 mg L−1) exhibited more freezing states (i.e., temporary cessations of movement), and males were more sensitive than females. Regardless of gender, ZIF-8 NPs exposure significantly reduced the SOD, CAT, and GST activities in the brain of zebrafish. Correlation analysis revealed that the brain oxidative stress induced by ZIF-8 NPs exposure might play an important role in their behavioral toxicity to zebrafish. These findings highlight the necessity for further assessment of the potential risks of MOF nanoparticles to aquatic species and the environment.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3