High-Intensity Interval Training and Moderate-Intensity Continuous Training Attenuate Oxidative Damage and Promote Myokine Response in the Skeletal Muscle of ApoE KO Mice on High-Fat Diet

Author:

Wang Linjia,Lavier Jessica,Hua Weicheng,Wang Yangwenjie,Gong Lijing,Wei Hao,Wang Jianxiong,Pellegrin MaximeORCID,Millet Grégoire P.ORCID,Zhang Ying

Abstract

The purpose of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the skeletal muscle in Apolipoprotein E knockout (ApoE KO) and wild-type (WT) C57BL/6J mice. ApoE KO mice fed with a high-fat diet were randomly allocated into: Control group without exercise (ApoE−/− CON), HIIT group (ApoE−/− HIIT), and MICT group (ApoE−/− MICT). Exercise endurance, blood lipid profile, muscle antioxidative capacity, and myokine production were measured after six weeks of interventions. ApoE−/− CON mice exhibited hyperlipidemia and increased oxidative stress, compared to the WT mice. HIIT and MICT reduced blood lipid levels, ROS production, and protein carbonyl content in the skeletal muscle, while it enhanced the GSH generation and potently promoted mRNA expression of genes involved in the production of irisin and BAIBA. Moreover, ApoE−/− HIIT mice had significantly lower plasma HDL-C content, mRNA expression of MyHC-IIx and Vegfa165 in EDL, and ROS level; but remarkably higher mRNA expression of Hadha in the skeletal muscle than those of ApoE−/− MICT mice. These results demonstrated that both exercise programs were effective for the ApoE KO mice by attenuating the oxidative damage and promoting the myokines response and production. In particular, HIIT was more beneficial to reduce the ROS level in the skeletal muscle.

Funder

Bilateral Science and Technology Cooperation Programme with Asia and Sino Swiss Science and Technology Cooperation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3