Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs

Author:

González-de-Peredo Ana V.ORCID,Vázquez-Espinosa MercedesORCID,Espada-Bellido EstrellaORCID,Ferreiro-González MartaORCID,Carrera CeferinoORCID,Barbero Gerardo F.ORCID,Palma MiguelORCID

Abstract

Allium cepa L. is one of the most abundant vegetable crops worldwide. In addition to its versatile culinary uses, onion also exhibits quite interesting medicinal uses. Bulbs have a high content of bioactive compounds that are beneficial for human health. This study intends to develop and optimize two appropriate ultrasound-assisted methods for the extraction of the phenolic compounds and anthocyanins present in red onion. A response surface methodology was employed and, specifically, a Box–Behnken design, for the optimization of the methods. The optimal conditions for the extraction of the phenolic compounds were the follows: 53% MeOH as solvent, pH 2.6, 60 °C temperature, 30.1% amplitude, 0.43 s cycle, and 0.2:11 g sample/mL solvent ratio. On the other hand, the optimal conditions for the anthocyanins were as follows: 57% MeOH as solvent, pH 2, 60 °C temperature, 90% amplitude, 0.64 s cycle, and 0.2:15 g sample/mL solvent ratio. Both methods presented high repeatability and intermediate precision, as well as short extraction times with good recovery yields. These results illustrate that the use of ultrasound-assisted extraction, when properly optimized, is suitable for the extraction and quantification of the compounds of interest to determine and improve the quality of the raw material and its subproducts for consumers.

Funder

State Subprogram of Research Infrastructures and Technical Scientific Equipment

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Ministry of Science and Innovation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3