Xanthophylls Modulate Palmitoylation of Mammalian β-Carotene Oxygenase 2

Author:

Uppal SheetalORCID,Dergunov Sergey A.ORCID,Zhang Weiyu,Gentleman Susan,Redmond T. MichaelORCID,Pinkhassik Eugene,Poliakov Eugenia

Abstract

An extensive body of work has documented the antioxidant role of xanthophylls (lutein and zeaxanthin) in human health and specifically how they provide photoprotection in human vision. More recently, evidence is emerging for the transcriptional regulation of antioxidant response by lutein/lutein cleavage products, similar to the role of β-carotene cleavage products in the modulation of retinoic acid receptors. Supplementation with xanthophylls also provides additional benefits for the prevention of age-related macular degeneration (AMD) and attenuation of Alzheimer’s disease symptoms. Mammalian β-carotene oxygenase 2 (BCO2) asymmetrically cleaves xanthophylls as well as β-carotene in vitro. We recently demonstrated that mouse BCO2 (mBCO2) is a functionally palmitoylated enzyme and that it loses palmitoylation when cells are treated with β-carotene. The mouse enzyme is the easiest model to study mammalian BCO2 because it has only one isoform, unlike human BCO2 with several major isoforms with various properties. Here, we used the same acyl-RAC methodology and confocal microscopy to elucidate palmitoylation and localization status of mBCO2 in the presence of xanthophylls. We created large unilamellar vesicle-based nanocarriers for the successful delivery of xanthophylls into cells. We demonstrate here that, upon treatment with low micromolar concentration of lutein (0.15 µM), mBCO2 is depalmitoylated and shows partial nuclear localization (38.00 ± 0.04%), while treatment with zeaxanthin (0.45 µM) and violaxanthin (0.6 µM) induces depalmitoylation and protein translocation from mitochondria to a lesser degree (20.00 ± 0.01% and 35.00 ± 0.02%, respectively). Such a difference in the behavior of mBCO2 toward various xanthophylls and its translocation into the nucleus in the presence of various xanthophylls suggests a possible mechanism for transport of lutein/lutein cleavage products to the nucleus to affect transcriptional regulation.

Funder

National Eye Institute

National Science Foundation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3