FRI-1 Is an Anti-Cancer Isoquinolinequinone That Inhibits the Mitochondrial Bioenergetics and Blocks Metabolic Shifts by Redox Disruption in Breast Cancer Cells

Author:

Córdova-Delgado MiguelORCID,Fuentes-Retamal SebastiánORCID,Palominos CharlotteORCID,López-Torres Camila,Guzmán-Rivera Daniela,Ramírez-Rodríguez OneyORCID,Araya-Maturana RamiroORCID,Urra Félix A.ORCID

Abstract

Since breast cancer (BC) cells are dependent on mitochondrial bioenergetics for promoting proliferation, survival, and metastasis, mitochondria highlight as an important target for anticancer drug discovery. FRI-1, methyl 1, 3-dimethyl-5, 8-dioxo-5, 8-dihydro-4-isoquinolinecarboxylate, was previously described as a selective cytotoxic compound on cancer cell lines, however, details on the mechanism of action remain unknown. In this work, we describe that FRI-1 inhibits mitochondrial bioenergetics, producing apoptosis in MCF7 and MDA-MB-231 BC cell lines. FRI-1 decreases the maximal oxygen consumption rate (OCR), Δψm, NADH, and ATP levels, with a notable increase of mitochondrial reactive oxygen species (ROS) production, promoting AMPK activation with pro-survival effects. Moreover, FRI-1 inhibits the metabolic remodeling to glycolysis induced by oligomycin. In isolated tumoral mitochondria, FRI-1 increases Complex I and III-dependent OCR state 2, and this is sensitive to rotenone and antimycin A inhibitor additions, suggesting a redox cycling event. Remarkably, α-ketoglutarate and lipoic acid supplementation reversed and promoted, respectively, the FRI-1-induced apoptosis, suggesting that mitochondrial redox disruption affects 2-oxoglutarate dehydrogenase (OGDH) activity, and this is involved in their anticancer mechanism. Consistent with this, the combination of FRI-1 and CPI-613, a dual inhibitor of redox-sensible tricarboxylic acid (TCA) cycle enzymes PDH and OGDH, produced extensive BC cell death. Taken together, our results suggest that FRI-1 exhibits anticancer effects through inhibition of mitochondrial bioenergetics by redox disruption in BC cells.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3