New Insights into the Antioxidant and Anti-Inflammatory Effects of Italian Salvia officinalis Leaf and Flower Extracts in Lipopolysaccharide and Tumor-Mediated Inflammation Models

Author:

Brindisi MatteoORCID,Bouzidi Chouaha,Frattaruolo LucaORCID,Loizzo Monica R.ORCID,Cappello Maria Stella,Dugay Annabelle,Deguin Brigitte,Lauria Graziantonio,Cappello Anna Rita,Tundis RosaORCID

Abstract

This work aimed to investigate and compare the in vitro antioxidant and anti-inflammatory effects of Salvia officinalis L. (sage) from Italy, with the aim of raising its current knowledge in this field. Leaves and flowers (S1–S8), harvested in two areas of Southern Italy, were extracted with methanol as a solvent by maceration or ultrasound-assisted extraction. Sage extracts, analysed by high pressure liquid chromatography-diode-array detection-electrospray ionization-quadrupole-mass spectroscopy (HPLC-DAD-ESI-Q-MS), exerted a promising antioxidant activity investigated using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and β-carotene bleaching tests, and elicited a significant decrease in reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. The anti-inflammatory activity was analysed in the same in vitro model. All the extracts did not affect cell viability although they showed anti-inflammatory activity, as they induced a decrease in nitrite levels that was greater than 50%, when employed at 50 µg/mL. Furthermore, they elicited a decrease in nitrite levels, as well as a decline in pro-inflammatory cytokine expression. The NF-κB transcription factor proved to be involved in the mechanisms that underlie such effects. Interestingly, sage extracts were able to interfere with the inflammatory activity induced by breast cancer cell-conditioned media (nitrite levels were significantly decreased, p < 0.05; p < 0.01), highlighting for the first time the important role of S. officinalis in controlling inflammation processes related to neoplastic progression.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3