Abstract
Antioxidants are synthetic or natural compounds capable of preventing or delaying oxidative damage caused by chemical species that can oxidize cell biomolecules, such as proteins, membranes, and DNA, leading to the development of various pathologies, such as cancer, atherosclerosis, Parkinson, Alzheimer, and other diseases serious. In this study, an amperometric biosensor was used to determine the antioxidant activity of teas and effervescent products based on vitamin C, available on the market. A sensor composed of three electrodes was used. The performance of the following electrochemical mediators was evaluated: meldola blue combined with Reineck salt (MBRS), Prussian blue (PB), and cobalt phthalocyanine (CoPC), as well as the time of polymerization in the enzymatic immobilization process and the agitation process during chronoamperometric measurements. Prussian blue proved to be more efficient as a mediator for the desired purposes. After optimizing the construction stages of the biosensor, as well as the operational parameters, it presented stability for a period of 7 months. The results clearly indicate that the biosensor can be successfully used to detect fraud in products called “antioxidants” or even in drugs containing less ascorbic acid than indicated on the labels. The detection limit was set at 4.93 µmol·L−1.
Funder
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance Code 001
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献