Evaluation of Photovoltaic Power Generation by using Deep Learning in Solar Panels Installed in Buildings

Author:

Wei

Abstract

Southern Taiwan has excellent solar energy resources that remain largely unused. This study incorporated a measure that aids in providing simple and effective power generation efficiency assessments of solar panel brands in the planning stage of installing these panels on roofs. The proposed methodology can be applied to evaluate photovoltaic (PV) power generation panels installed on building rooftops in Southern Taiwan. In the first phase, this study selected panels of the BP3 series, including BP350, BP365, BP380, and BP3125, to assess their PV output efficiency. BP Solar is a manufacturer and installer of photovoltaic solar cells. This study first derived ideal PV power generation and then determined the suitable tilt angle for the PV panels leading to direct sunlight that could be acquired to increase power output by panels installed on building rooftops. The potential annual power outputs for these solar panels were calculated. Climate data of 2016 were used to estimate the annual solar power output of the BP3 series per unit area. The results indicated that BP380 was the most efficient model for power generation (183.5 KWh/m2-y), followed by BP3125 (182.2 KWh/m2-y); by contrast, BP350 was the least efficient (164.2 KWh/m2-y). In the second phase, to simulate meteorological uncertainty during hourly PV power generation, a surface solar radiation prediction model was developed. This study used a deep learning–based deep neural network (DNN) for predicting hourly irradiation. The simulation results of the DNN were compared with those of a backpropagation neural network (BPN) and a linear regression (LR) model. In the final phase, the panel of module BP3125 was used as an example and demonstrated the hourly PV power output prediction at different lead times on a solar panel. The results demonstrated that the proposed method is useful for evaluating the power generation efficiency of the solar panels.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference69 articles.

1. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

2. Photovoltaic Systems Engineering;Messenger,2000

3. An overview of crystalline silicon solar cell technology: Past, present, and future;Sopian;AIP Conf. Proc.,2017

4. Photovoltaic modules operating temperature estimation using a simple correlation;Muzathik;Int. J. Energy Eng.,2014

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3