Abstract
Energy consumption in the transport sector and buildings are of great concern. This research aims to quantify how eco-routing, eco-driving and eco-charging can increase the amount of energy available for vehicle-to-building. To do this, the working population was broken into social groups (freelancers, local workers and commuters) who reside in two cities with different climate zones (Alcalá de Henares-Spain and Jaén-Spain) since the way of using electric vehicles is different. An algorithm based on the Here® application program interface and neural networks was implemented to acquire data of the stochastic usage of EVs of each social group. Finally, an increase in the amount of energy available for vehicle-to-building was assessed thanks to the algorithm. The results per day were as follows. Owing to the algorithm proposed a reduction ranging from 0.6 kWh to 2.2 kWh was obtained depending on social groups. The proposed algorithm facilitated an increase in energy available for vehicle-to-building ranging from 13.2 kWh to 33.6 kWh depending on social groups. The results show that current charging policies are not compatible with all social groups and do not consider the renewable energy contribution to the total electricity demand.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献