Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents

Author:

Marmerstein Joseph T.ORCID,McCallum Grant A.ORCID,Durand Dominique M.ORCID

Abstract

The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties of the CNTY biosensor in both size and flexibility and provides an important step forward in our ability to understand spontaneous vagus-nerve function.

Funder

Congressionally Directed Medical Research Programs

National Institutes of Health

Office of Research Infrastructure

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3