Selective chronic recording in small nerve fascicles of sciatic nerve with carbon nanotube yarns in rats

Author:

Kotamraju B PORCID,Eggers Thomas E,McCallum Grant AORCID,Durand Dominique M

Abstract

Abstract Objective. The primary challenge faced in the field of neural rehabilitation engineering is the limited advancement in nerve interface technology, which currently fails to match the mechanical properties of small-diameter nerve fascicles. Novel developments are necessary to enable long-term, chronic recording from a multitude of small fascicles, allowing for the recovery of motor intent and sensory signals. Approach. In this study, we analyze the chronic recording capabilities of carbon nanotube yarn electrodes in the peripheral somatic nervous system. The electrodes were surgically implanted in the sciatic nerve’s three individual fascicles in rats, enabling the recording of neural activity during gait. Signal-to-noise ratio (SNR) and information theory were employed to analyze the data, demonstrating the superior recording capabilities of the electrodes. Flat interface nerve electrode and thin-film longitudinal intrafascicular electrode electrodes were used as a references to assess the results from SNR and information theory analysis. Main results. The electrodes exhibited the ability to record chronic signals with SNRs reaching as high as 15 dB, providing 12 bits of information for the sciatic nerve, a significant improvement over previous methods. Furthermore, the study revealed that the SNR and information content of the neural signals remained consistent over a period of 12 weeks across three different fascicles, indicating the stability of the interface. The signals recorded from these electrodes were also analyzed for selectivity using information theory metrics, which showed an information sharing of approximately 1.4 bits across the fascicles. Significance. The ability to safely and reliably record from multiple fascicles of different nerves simultaneously over extended periods of time holds substantial implications for the field of neural and rehabilitation engineering. This advancement addresses the limitation of current nerve interface technologies and opens up new possibilities for enhancing neural rehabilitation and control.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3