Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes

Author:

Rodríguez‐Meana Bruno12ORCID,del Valle Jaume123,Viana Damià4,Walston Steven T.4,Ria Nicola4,Masvidal‐Codina Eduard4,Garrido Jose A.45,Navarro Xavier126ORCID

Affiliation:

1. Institute of Neurosciences Department of Cell Biology Physiology and Immunology Universitat Autònoma de Barcelona Bellaterra 08193 Spain

2. Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III Madrid 28031 Spain

3. Department de Bioquímica i Fisiologia Universitat de Barcelona Barcelona 08028 Spain

4. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB Bellaterra 08193 Spain

5. ICREA Barcelona 08010 Spain

6. Institut Guttmann of Neurorehabilitation Badalona 08916 Spain

Abstract

AbstractLimb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve‐injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene‐derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.

Funder

Instituto de Salud Carlos III

Agencia Estatal de Investigación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3