Whole-Body Motion Planning for a Six-Legged Robot Walking on Rugged Terrain

Author:

Chen Jie,Gao Fan,Huang Chao,Zhao Jie

Abstract

Whole-body motion planning is a key ability for legged robots, which allows for the generation of terrain adaptive behaviors and thereby improved mobility in complex environment. To this end, this paper addresses the issue of terrain geometry based whole-body motion planning for a six-legged robot over a rugged terrain. The whole-body planning is decomposed into two sub-tasks: leg support and swing. For leg support planning, the target pose of the robot torso in a walking step is first found by maximizing the stability margin at the moment of support-swing transition and matching the orientation of the support polygon formed by target footholds. Then, the torso and thereby the leg support trajectories are generated using cubic spline interpolation and transferred into joint space through inverse kinematics. In terms of leg swing planning, the trajectories in a walking step are generated by solving an optimal problem that satisfies three constraints and a bioinspired objective function. The proposed whole-body motion planning strategies are implemented with a simulation and a real-world six-legged robot, and the results show that stable and collision-free motions can be produced for the robot over rugged terrains.

Funder

National Natural Science Foundation of China

State Key Laboratory of Robotics and System

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3