Prediction Interval Adjustment for Load-Forecasting using Machine Learning

Author:

Zuniga-Garcia Miguel A.,Santamaría-Bonfil G.ORCID,Arroyo-Figueroa G.ORCID,Batres Rafael

Abstract

Electricity load-forecasting is an essential tool for effective power grid operation and energy markets. However, the lack of accuracy on the estimation of the electricity demand may cause an excessive or insufficient supply which can produce instabilities in the power grid or cause load cuts. Hence, probabilistic load-forecasting methods have become more relevant since these allow an understanding of not only load-point forecasts but also the uncertainty associated with it. In this paper, we develop a probabilistic load-forecasting method based on Association Rules and Artificial Neural Networks for Short-Term Load Forecasting (2 h ahead). First, neural networks are used to estimate point-load forecasts and the variance between these and observations. Then, using the latter, a simple prediction interval is calculated. Next, association rules are employed to adjust the prediction intervals by exploiting the confidence and support of the association rules. The main idea is to increase certainty regarding predictions, thus reducing prediction interval width in accordance to the rules found. Results show that the presented methodology provides a closer prediction interval without sacrificing accuracy. Prediction interval quality and effectiveness is measured using Prediction Interval Coverage Probability (PICP) and the Dawid–Sebastiani Score (DSS). PICP and DSS per horizon shows that the Adjusted and Normal prediction intervals are similar. Also, probabilistic and point-forecast Means Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics are used. Probabilistic MAE indicates that Adjusted prediction intervals fail by less than 2.5 MW along the horizons, which is not significant if we compare it to the 1.3 MW of the Normal prediction interval failure. Also, probabilistic RMSE shows that the probabilistic error tends to be larger than MAE along the horizons, but the maximum difference between Adjusted and Normal probabilistic RMSE is less than 6 MW, which is also not significant.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3