Hydrothermal Synthesis of Various Magnetic Properties of Controlled Micro/Nanostructured Powders and Films of Rare-Earth Iron Garnet

Author:

Tsidaeva NataliaORCID,Nakusov Ahsarbek,Khaimanov Spartak,Wang Wei

Abstract

In this study, the synthesis and magnetic properties of the rare-earth iron garnets Sm3Fe5O12, Pr3Fe5O12, and Er3Fe5O12 (in the form of powders and thin films) are reported. According to the composition, shape, and size of particles, the optimal precipitant for the synthesis of Sm3Fe5O12, Pr3Fe5O12, and Er3Fe5O12 films is an aqueous solution. The parameters for the synthesis of powders and films of the rare-earth iron garnets with micro- and nano-particles have been investigated and selected. The magnetic properties of these materials were studied; field dependencies of the magnetic moment (hysteresis loops) of nanostructured powders of iron garnets of samarium, praseodymium, and erbium in the range of +20 kOe to −20 kOe were obtained. The structural features of the Al2O3 substrate on which the films were formed are also shown.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3