Ionic Liquids-Based Nanocolloids—A Review of Progress and Prospects in Convective Heat Transfer Applications

Author:

Minea Alina AdrianaORCID,Sohel Murshed S. M.ORCID

Abstract

Ionic liquids are a new and challenging class of fluids with great and tunable properties, having the capability of an extensive area of real-life applications, from chemistry, biology, medicine to heat transfer. These fluids are often considered as green solvents. Several properties of these fluids can be enhanced by adding nanoparticles following the idea of nanofluids. These ionic liquids-based nanocolloids are also termed in the literature as ionanofluids or nanoparticles-enhanced ionic liquids. This review summarizes the findings in both areas of ionic liquids and ionic liquids nanocolloids (i.e., ionic liquids with nanoparticles in suspension) with direct applicability in convective heat transfer applications. The review presents in a unified manner the progress and prospects of ionic liquids and their nanocolloids from preparation, thermophysical properties and equally experimental and numerical works. As the heat transfer enhancement requires innovative fluids, this new class of ionic liquids-based nanocolloids is certainly a viable option, despite the noticed drawbacks. Nevertheless, experimental studies are very limited, and thus, extensive experiments are needed to elucidate ionic liquids interaction with nanoparticles, as well as their behavior in convective heat transfer.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3