Pneumatic Soft Actuator with Anisotropic Soft and Rigid Restraints for Pure in-Plane Bending Motion

Author:

Su ManjiaORCID,Xie Rongzhen,Zhang Yihong,Kang Xiaopan,Huang Dongyu,Guan Yisheng,Zhu HaifeiORCID

Abstract

A variety of soft robots with prospective applications has been developed in recent years. As a key component of a soft robot, the soft actuator plays a critical role and hence must be designed carefully according to application requirements. The soft body may deform in undesired directions if no restraint is endued, due to the isotropy of the pure soft material. For some soft robots such as an inchworm-like biped climbing robot, the actuation direction must be constrained with the appropriate structure design of the soft actuator. This study proposes a pneumatic soft actuator (PSA) to achieve pure in-plane bending motion with anisotropic soft and rigid restraints. The in-plane bending pneumatic soft actuator (2D-PSA) is developed with a composite structure where a metal hinge belt is embedded into the soft material. The design method, material choice, and fabrication process are presented in detail in this paper. Tests are conducted to measure the actuating performance of 2D-PSA in terms of the relationship between the bending angle or force and the input air pressure. Dynamic response is also measured with a laser tracker. Furthermore, a comparative experiment is carried out between the presented 2D-PSA and a general PSA, with results verifying the effectiveness of the presented 2D-PSA. A robot consisting of two serially-connected 2D-PSAs and three pneumatic suckers, which can climb on a flat surface mimicking a snake’s locomotion, is developed as an application demo of the presented 2D-PSA. Its locomotion capability presents the in-plane performance and mobility of 2D-PSA.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. A perspective-Current trends and prospects for the future Soft Robotics;Carmel;Soft Robot.,2013

2. Soft Robotics for Chemists

3. Multigait soft robot

4. Soft Autonomous Materials Using Active Elasticity and Embedded Distributed Computation;Correll,2014

5. Modeling of Soft Fiber-Reinforced Bending Actuators

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3