Abstract
This paper presents the design, implementation, and testing of a soft landing gear together with a neural network-based control method for replicating avian landing behavior on non-flat surfaces. With full consideration of unmanned aerial vehicles and landing gear requirements, a quadrotor helicopter, comprised of one flying unit and one landing assistance unit, is employed. Considering the touchdown speed and posture, a novel design of a soft mechanism for non-flat surfaces is proposed, in order to absorb the remaining landing impact. The framework of the control strategy is designed based on a derived dynamic model. A neural network-based backstepping controller is applied to achieve the desired trajectory. The simulation and outdoor testing results attest to the effectiveness and reliability of the proposed control method.
Funder
National Natural Science Foundation of China
Shandong Provincial Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献