Experimental Study of Aluminium-Timber Composite Bolted Connections Strengthened with Toothed Plates

Author:

Chybiński MarcinORCID,Polus ŁukaszORCID

Abstract

This paper presents the first experimental study of the load-slip behaviour of aluminium-timber composite bolted connections reinforced with toothed plates. The effectiveness of the strengthening was evaluated in laboratory push-out tests. The push-out test samples consisted of laminated veneer lumber panels, aluminium alloy I-beams, and bolts (grade 8.8 10 mm × 125 mm and 12 mm × 135 mm bolts, grade 5.8 10 mm × 125 mm and 12 mm × 135 mm bolts). A group of 16 specimens had toothed plates as additional reinforcement, while 16 specimens had no reinforcement. The impact of the bolt diameter (10 and 12 mm) and bolt grade (5.8 and 8.8) on the behaviour of the connections was also analysed. The values of the ultimate load and the slip modulus for the bolted connections with grade 8.8 10 mm and 12 mm bolts and with grade 5.8 12 mm bolts reinforced by toothed-plate connectors were comparable to the values for the non-reinforced connections. This was because, in the case of grade 8.8 10 mm × 125 mm and 12 mm × 135 mm bolts and grade 5.8 12 mm × 135 mm bolts, the laminated veneer lumber (LVL) slabs split both in the reinforced and non-reinforced connections. The toothed-plate connectors reduced timber destruction in the bearing zones in the LVL slabs. However, they did not protect the LVL slabs against splitting. Therefore, the impact of the toothed plate connectors on the stiffness and strength of the bolted connections with grade 8.8 10 mm and 12 mm bolts and with grade 5.8 12 mm bolts analysed in this paper was found to be negligible. In the case of grade 5.8 10 mm bolts, the LVL slabs did not split. The mean slip modulus k0.6 of the connections with grade 5.8 10 mm bolts reinforced with toothed plate connectors was 2.9 times higher than that of the non-reinforced connections. However, the strength of the connections with grade 5.8 10 mm bolts was 1.2 times lower after reinforcing. This was because the shanks of the bolts were sheared faster in the reinforced connections than in the non-reinforced connections as a result of the bolt shanks being under the bearing pressure of the aluminium flange, the LVL slab, and the toothed-plate flange. This situation did not occur for the remaining connections because they had a higher strength (grade 8.8 bolts) or a larger diameter (12 mm), and their bolts were less prone to cutting off. The investigated load–slip curves of the reinforced bolted connections can be used for designing and numerical modelling of aluminium-timber composite beams with this type of connection.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3