Abstract
Field-effect transistor (FET) sensors require not only high sensitivity but also excellent regeneration ability before widespread applications are possible. Although some regenerative FETs have been reported, their lowest limit of detection (LoD) barely achieves 10−15 mol L−1. Here, we develop a graphene FET with a regenerative sensing interface based on dynamic covalent chemistry (DCvC). The LoD down to 5.0 × 10−20 mol L−1 remains even after 10 regenerative cycles, around 4–5 orders of magnitude lower than existing transistor sensors. Owing to its ultra-sensitivity, regeneration ability, and advantages such as simplicity, low cost, label-free and real-time response, the FET sensor based on DCvC is valuable in applications such as medical diagnosis, environment monitoring, etc.
Funder
the National Key R&D Program of China
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献