Abstract
In this paper, we present a new procedure to solve the global localization of mobile robots called Environmental Stimulus Localization (ESL). We propose that the presence of common facts on the environment around the robot can be considered as stimuli for the procedure. The robust performance of our approach is supported by two concurrent particle filters. A primary particle filter estimates and tracks the robot position, while a secondary filter is fired by environmental stimuli, helps to reduce the influence of measurement errors and allows an earlier recovery from localization failures. We have successfully used this method in a 5000 m 2 real indoor environment using as inputs the available environment information from a Geographical Information System (GIS) map, the robot’s odometry and the output of an algorithm for the perception of facts from the environment. We present a case study and the result of different tests, showing the performance of our method under the influence of errors in real applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献