A Cross-View Geo-Localization Algorithm Using UAV Image and Satellite Image

Author:

Fan Jiqi1ORCID,Zheng Enhui1ORCID,He Yufei1,Yang Jianxing1

Affiliation:

1. School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Within research on the cross-view geolocation of UAVs, differences in image sources and interference from similar scenes pose huge challenges. Inspired by multimodal machine learning, in this paper, we design a single-stream pyramid transformer network (SSPT). The backbone of the model uses the self-attention mechanism to enrich its own internal features in the early stage and uses the cross-attention mechanism in the later stage to refine and interact with different features to eliminate irrelevant interference. In addition, in the post-processing part of the model, a header module is designed for upsampling to generate heat maps, and a Gaussian weight window is designed to assign label weights to make the model converge better. Together, these methods improve the positioning accuracy of UAV images in satellite images. Finally, we also use style transfer technology to simulate various environmental changes in order to expand the experimental data, further proving the environmental adaptability and robustness of the method. The final experimental results show that our method yields significant performance improvement: The relative distance score (RDS) of the SSPT-384 model on the benchmark UL14 dataset is significantly improved from 76.25% to 84.40%, while the meter-level accuracy (MA) of 3 m, 5 m, and 20 m is increased by 12%, 12%, and 10%, respectively. For the SSPT-256 model, the RDS has been increased to 82.21%, and the meter-level accuracy (MA) of 3 m, 5 m, and 20 m has increased by 5%, 5%, and 7%, respectively. It still shows strong robustness on the extended thermal infrared (TIR), nighttime, and rainy day datasets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3