A Novel Fault Diagnosis Scheme for Rolling Bearing Based on Convex Optimization in Synchroextracting Chirplet Transform

Author:

You Guanghui,Lv Yong,Jiang Yefeng,Yi Cancan

Abstract

Synchroextracting transform (SET) developed from synchrosqueezing transform (SST) is a novel time-frequency (TF) analysis method. Its concentrated TF spectrum is obtained by applying a synchroextracting operator into TF transformation co-efficients on the TF plane. For this class of post-processing TF analysis methods, the main research focuses on the accurate estimation of instantaneous frequency (IF). However, the performance of TF analysis is greatly affected by the strong frequency modulation (FM) signal. In particular, the actual measured mechanical vibration signals always contain strong background noise, which decreases the resolution of TF representation, resulting in an inaccurate ridge extraction. To solve this problem, an improved penalty function based on the convex optimization scheme is firstly introduced for signal denoising. Based on the superiority of the linear chirplet transform (LCT) in dealing with modulated signals, the synchroextracting chirplet transform (SECT) is employed to sharpen the TF representation after the convex optimization denoising operation. To verify the effectiveness of the proposed method, the numerical simulation signals and the measured fault signals of rolling bearing are carried out, respectively. The results demonstrate that the proposed method leads to a better solution in rolling bearing fault feature extraction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3