A Novel Fault Diagnosis Method for Rolling Bearing Based on Improved Sparse Regularization via Convex Optimization

Author:

Zhong Dongjie12,Yi Cancan123ORCID,Xiao Han12ORCID,Zhang Houzhuang12,Wu Anding4

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

3. Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

4. Wenzhou Special Equipment Inspection and Research Institute, Wenzhou 325007, China

Abstract

Structural health monitoring and fault state identification of key components, such as rolling bearing, located in the mechanical main drive system, have a vital significance. The acquired fault signal of rolling bearing always presents the obvious nonlinear and nonstationary characteristics. Moreover, the concerned features are submerged in strong background noise. To handle this difficulty, a novel fault signal denoising scheme based on improved sparse regularization via convex optimization is proposed to extract the fault feature of rolling bearing. In this paper, the generalized minimax-concave (GMC) penalty is firstly researched to promote the sparsity of signal, which is based on traditional L1-norm and Huber function. It is designed to estimate the sparse solutions more accurately and maintain the convexity of the cost function. Then, the GMC penalty is extended to 1-D first-order total variation (TV) as nonseparability and nonconvex regularizer. Thus, a convex optimization problem, which involves a quadratic data fidelity term and a convex regularization term, is developed in this paper. To accelerate the convergence of the algorithm, it is solved by forward-backward (FB) iterative algorithm and thus the denoised signal can be obtained. In order to demonstrate its performance, the proposed method is illustrated for numerical simulation signal and applied in the feature extraction of the measured rolling bearing vibration signal.

Funder

National Natural Science Foundation of China under

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3