Asymmetric Encoder-Decoder Structured FCN Based LiDAR to Color Image Generation

Author:

Kim Hyun-KooORCID,Yoo Kook-Yeol,Park Ju H.ORCID,Jung Ho-YoulORCID

Abstract

In this paper, we propose a method of generating a color image from light detection and ranging (LiDAR) 3D reflection intensity. The proposed method is composed of two steps: projection of LiDAR 3D reflection intensity into 2D intensity, and color image generation from the projected intensity by using a fully convolutional network (FCN). The color image should be generated from a very sparse projected intensity image. For this reason, the FCN is designed to have an asymmetric network structure, i.e., the layer depth of the decoder in the FCN is deeper than that of the encoder. The well-known KITTI dataset for various scenarios is used for the proposed FCN training and performance evaluation. Performance of the asymmetric network structures are empirically analyzed for various depth combinations for the encoder and decoder. Through simulations, it is shown that the proposed method generates fairly good visual quality of images while maintaining almost the same color as the ground truth image. Moreover, the proposed FCN has much higher performance than conventional interpolation methods and generative adversarial network based Pix2Pix. One interesting result is that the proposed FCN produces shadow-free and daylight color images. This result is caused by the fact that the LiDAR sensor data is produced by the light reflection and is, therefore, not affected by sunlight and shadow.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3