A Dilated Residual Network for Turbine Blade ICT Image Artifact Removal

Author:

Han RuiORCID,Zeng Fengying,Li Jing,Yao Zhenwen,Guo Wenhua,Zhao Jiyuan

Abstract

Artifacts are divergent strip artifacts or dark stripe artifacts in Industrial Computed Tomography (ICT) images due to large differences in density among the components of scanned objects, which can significantly distort the actual structure of scanned objects in ICT images. The presence of artifacts can seriously affect the practical application effectiveness of ICT in defect detection and dimensional measurement. In this paper, a series of convolution neural network models are designed and implemented based on preparing the ICT image artifact removal datasets. Our findings indicate that the RF (receptive field) and the spatial resolution of network can significantly impact the effectiveness of artifact removal. Therefore, we propose a dilated residual network for turbine blade ICT image artifact removal (DRAR), which enhances the RF of the network while maintaining spatial resolution with only a slight increase in computational load. Extensive experiments demonstrate that the DRAR achieves exceptional performance in artifact removal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3