Affiliation:
1. School of Computer Science, Harbin Institute of Technology, Harbin 150009, China
Abstract
Reinforcement learning provides a general framework for achieving autonomy and diversity in traditional robot motion control. Robots must walk dynamically to adapt to different ground environments in complex environments. To achieve walking ability similar to that of humans, robots must be able to perceive, understand and interact with the surrounding environment. In 3D environments, walking like humans on rugged terrain is a challenging task because it requires complex world model generation, motion planning and control algorithms and their integration. So, the learning of high-dimensional complex motions is still a hot topic in research. This paper proposes a deep reinforcement learning-based footstep tracking method, which tracks the robot’s footstep position by adding periodic and symmetrical information of bipedal walking to the reward function. The robot can achieve robot obstacle avoidance and omnidirectional walking, turning, standing and climbing stairs in complex environments. Experimental results show that reinforcement learning can be combined with real-time robot footstep planning, avoiding the learning of path-planning information in the model training process, so as to avoid the model learning unnecessary knowledge and thereby accelerate the training process.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ZMP — Where Are We After Fifty-Five Years?;International Journal of Humanoid Robotics;2024-01-12