Convex Neural Networks Based Reinforcement Learning for Load Frequency Control under Denial of Service Attacks

Author:

Zeng Fancheng,Qi GuanqiuORCID,Zhu Zhiqin,Sun Jian,Hu Gang,Haner Matthew

Abstract

With the increase in the complexity and informatization of power grids, new challenges, such as access to a large number of distributed energy sources and cyber attacks on power grid control systems, are brought to load-frequency control. As load-frequency control methods, both aggregated distributed energy sources (ADES) and artificial intelligence techniques provide flexible solution strategies to mitigate the frequency deviation of power grids. This paper proposes a load-frequency control strategy of ADES-based reinforcement learning under the consideration of reducing the impact of denial of service (DoS) attacks. Reinforcement learning is used to evaluate the pros and cons of the proposed frequency control strategy. The entire evaluation process is realized by the approximation of convex neural networks. Convex neural networks are used to convert the nonlinear optimization problems of reinforcement learning for long-term performance into the corresponding convex optimization problems. Thus, the local optimum is avoided, the optimization process of the strategy utility function is accelerated, and the response ability of controllers is improved. The stability of power grids and the convergence of convex neural networks under the proposed frequency control strategy are studied by constructing Lyapunov functions to obtain the sufficient conditions for the steady states of ADES and the weight convergence of actor–critic networks. The article uses the IEEE14, IEEE57, and IEEE118 bus testing systems to verify the proposed strategy. Our experimental results confirm that the proposed frequency control strategy can effectively reduce the frequency deviation of power grids under DoS attacks.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Innovation research group of universities in Chongqing

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3