A Long Short-Term Memory Neural Network Based Simultaneous Quantitative Analysis of Multiple Tobacco Chemical Components by Near-Infrared Hyperspectroscopy Images

Author:

Zhu Zhiqin,Qi GuanqiuORCID,Lei Yangbo,Jiang Daiyu,Mazur Neal,Liu Yang,Wang Di,Zhu Wei

Abstract

Near-infrared (NIR) spectroscopy has been widely used in agricultural operations to obtain various crop parameters, such as water content, sugar content, and different indicators of ripeness, as well as other potential information concerning crops that cannot be directly obtained by human observation. The chemical compositions of tobacco play an important role in the quality of cigarettes. The NIR spectroscopy-based chemical composition analysis has recently become one of the most effective methods in tobacco quality analysis. Existing NIR spectroscopy-related solutions either have relatively low analysis accuracy, or are only able to analyze one or two chemical components. Thus, a precise prediction model is needed to improve the analysis accuracy of NIR data. This paper proposes a tobacco chemical component analysis method based on a neural network (TCCANN) to quantitatively analyze the chemical components of tobacco leaves by using NIR spectroscopy, including nicotine, total sugar, reducing sugar, total nitrogen, potassium, chlorine, and pH value. The proposed TCCANN consists of both residual network (ResNet) and long short-term memory (LSTM) neural network. ResNet is applied to the feature extraction of high-dimension NIR spectroscopy, which can effectively avoid the gradient-disappearance issue caused by the increase of network depth. LSTM is used to quantitatively analyze the multiple chemical compositions of tobacco leaves in a simultaneous manner. LSTM selectively allows information to pass through by a gated unit, thereby comprehensively analyzing the correlation between multiple chemical components and corresponding spectroscopy. The experimental results confirm that the proposed TCCANN not only predicts the corresponding values of seven chemical components simultaneously, but also achieves better prediction performance than other existing machine learning methods.

Funder

National Natural Science Foundation of China

Innovation Research Group of Universities in Chongqing

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference61 articles.

1. Economic Costs of Tobacco Usehttp://tobacconomics.org/files/research/523/UIC_Economic-Costs-of-Tabacco-Use-Policy-Brief_v1.3.pdf/

2. Determination of 27 chemical constituents in Chinese southwest tobacco by FT-NIR spectroscopy

3. Study on model of aroma quality evaluation for flue-cured tobacco based on principal component analysis;Ye;J. Food Agric. Environ.,2011

4. Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3