Abstract
Drought has become one of the major constraints to agricultural development, particularly in areas that lack water. Studying the effects of different water stresses on the photosynthesis, growth, yield, water use efficiency (WUE) and irrigation water productivity (IWP) of winter wheat will provide data for the development of scientific irrigation strategies for water-saving agricultural methods. According to the size of the field water capacity, four different water stress levels were set, i.e., 30–40% (severe stress), 40–50% (moderate stress), 50–60% (mild stress) and 60–80% (well-watered) of field water capacity, controlling the amount of irrigation through an automatic irrigation system. The results showed that the seasonal changes in photosynthetic parameters, such as net photosynthetic rate (Pn), intercellular carbon concentration (Ci), stomatal conductance (Gs) and transpiration (E), significantly decreased under moderate and severe stress. As a result, the height, biomass and grain size of winter wheat decreased significantly, which led to low WUE and IWP. The Pn of the mild stress group only slightly decreased compared to that of the well-watered group, and was actually higher during the flowering and grain-filling stages, resulting in increases in dry biomass and 1000 grain weight of 2.07% and 1.95%, respectively. Higher WUE and IWP were attributed to higher yields and less water use. Thus, mild stress (60–80% field water capacity) resulted in the optimal use of water resources without a significant reduction in yield in the North China Plain (NCP). Therefore, mild stress can be considered a suitable environment for winter wheat growth in arid areas.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献