Biomass response of chickpea (Cicer arietinum L.) to different textured soils and irrigation levels

Author:

Manare Maxson Masowa ,Phesheya Dlamini ,Zenzile Peter Khetsha

Abstract

Irrigation is required to supplement rainfall to enhance the productivity of chickpea in South Africa (SA). However, the dependence on irrigation can be problematic for SA and other countries with limited natural water resources and variable rainfall. Even though access to irrigation water has been identified as one of the challenges faced when planting chickpea in the winter season in SA, irrigation management strategies for chickpea grown on soils differing in texture have not gained considerable research attention. Hence, this study aimed to assess the effects of irrigation levels on dry matter production of chickpea grown on two soils differing in soil texture under greenhouse conditions. The experiment was arranged as a 3 × 2 factorial in a completely randomized design, with 3 irrigation levels (25%, 50% and 75% of the water-holding capacity of soil (WHC)) and 2 soils differing in soil textural class (Loamy sand (LS) soil and sandy loam (SL) soil), replicated thrice. Irrigation level, soil texture and their interaction significantly affected shoot biomass (SBM) and total plant biomass (TBM). Generally, SBM, TBM and root biomass decreased correspondingly with the reduction in irrigation. The 25% WHC significantly reduced the SBM by up to 60% and TBM by up to 56% compared to the 50% and 75% WHC. The SBM and TBM were higher in SL soil than in LS soil. A significantly higher root/shoot ratio (0.45) in the LS soil than in the SL soil (0.16) indicated that the conditions of LS soil encouraged plants to allocate higher proportions of biomass into roots, possibly due to increased competition for soil resources. In conclusion, maintaining soil moisture at 50% WHC ensures better chickpea dry matter production in SL soil.

Publisher

Academy of Science of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3