Research on Mechanical and Shrinkage Characteristics of a Resource-Based Cement Solid-Waste Concrete

Author:

Ning Shikai12,Jiang Xidong12,Li Bin12,Shan Long3,Li Hongbo3

Affiliation:

1. China Railway Construction Bridge Engineering Bureau Group Northwest Engineering Co., Ltd., Yinchuan 750021, China

2. China Railway Construction Bridge Engineering Bureau Group, Yinchuan 750021, China

3. College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

Abstract

Recycling of multi-source solid waste is of great benefit to energy conservation and environmental governance. In this paper, a new type of environmental protection concrete for railway accessory facilities was prepared from silicon-manganese slag, steel slag, fly ash and recycled macadam. Seven kinds of concrete with different mix proportions were designed. Through unconfined compressive strength, splitting, drying shrinkage and temperature shrinkage tests, the multivariate changing trends of steel slag content, cement dosage and age on the anti-interference ability of concrete were investigated. The main mechanisms of the development of mechanical and dry shrinkage properties were revealed by the hydration process of 3SR-60. The results show that 3SR-60 had better mechanical strength under the same cement dosage. The temperature shrinkage strain decreased and then increased with the rise of the proportion of waste residue, increased with the addition of cement dosage and decreased first and then increased with the descent in the temperature. The temperature shrinkage coefficient reached the lowest value at 0–10 °C. The drying shrinkage coefficient decreases with the increase in the proportion of waste residue and increases with the increase in cement dosage. The dry shrinkage strain increased rapidly during the first 8 days and became almost constant after 30 days. Cementation of calcium silicate hydrate (C-S-H) and ettringite (AFt) developed continuously and filled the internal pores of the structure, interlocking and cementing with each other, which made the microstructure develop from a three-dimensional network to a dense complex, and the macro dimension was reflected in the enhancement of the power to resist external interference. The conclusion of the test summarized that SR-60 had preferable mechanical and shrinkage performance.

Funder

Key R&D Project of Ningxia Hui Autonomous Region - Research and Application of Key Technologies for Preparing Road Mixture of Powdered Industrial Waste and Building Solid Waste in Ningxia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3