Comprehensive Understanding of the Effect of TGO Growth Modes on Thermal Barrier Coating Failure Based on a Simulation

Author:

Qiao Da1234,Man Jixin1234,Yan Wengao1234ORCID,Xue Beirao1234,Bian Xiangde134,Zeng Wu134

Affiliation:

1. Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. National Key Laboratory of Science and Technology on Advanced Light-Duty Gas-Turbine, Beijing 100190, China

4. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The growth stress induced by thermally grown oxide (TGO) is one of the main reasons for the failure of thermal barrier coatings (TBCs). In this study, the failure behavior of TBCs was examined based on different growth modes of TGO. A TBC thermo-mechanical model with a simplified sinusoidal interface morphology was established by the secondary development of a numerical simulation. The plasticity and creep behavior of materials were considered. Based on the subroutine development, the non-uniform growth of the TGO layer was realized. Cohesive elements were also applied to the TC/TGO interface. The stress distribution and evolution at the TC/TGO interface were investigated. Then, the cracking behavior near the interface was studied. The results show that lateral growth causes the off-valley site to replace the previous off-peak site as a vulnerable site. The non-uniform growth accelerates damage in the off-valley site, which leads to a change in the failure behavior. These results will provide significant guidance for understanding the TBC failure and the development of advanced TBCs.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3