Growth of Ga0.70In0.30N/GaN Quantum-Wells on a ScAlMgO4 (0001) Substrate with an Ex-Situ Sputtered-AlN Buffer Layer

Author:

Zheng Dong-Guang1ORCID,Min Sangjin2ORCID,Kim Jiwon2,Han Dong-Pyo3

Affiliation:

1. Department of Electronic and Communication, Hangzhou Dianzi University Information Engineering College, Hangzhou 311305, China

2. Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Gyeonggi, Republic of Korea

3. Department of Display & Semiconductor Engineering, School of Electrical Engineering, Pukyoung National University, Busan 48513, Republic of Korea

Abstract

This study attempted to improve the internal quantum efficiency (IQE) of 580 nm emitting Ga0.70In0.30N/GaN quantum-wells (QWs) through the replacement of a conventional c-sapphire substrate and an in-situ low-temperature GaN (LT-GaN) buffer layer with the ScAlMgO4 (0001) (SCAM) substrate and an ex-situ sputtered-AlN (sp-AlN) buffer layer, simultaneously. To this end, we initially tried to optimize the thickness of the sp-AlN buffer layer by investigating the properties/qualities of an undoped-GaN (u-GaN) template layer grown on the SCAM substrate with the sp-AlN buffer layer in terms of surface morphology, crystallographic orientation, and dislocation type/density. The experimental results showed that the crystallinity of the u-GaN layer grown on the SCAM substrate with the 30 nm thick sp-AlN buffer layer [GaN/sp-AlN(30 nm)/SCAM] was superior to that of the conventional u-GaN template layer grown on the c-sapphire substrate with an LT-GaN buffer layer (GaN/LT-GaN/FSS). Notably, the experimental results showed that the structural properties and crystallinity of GaN/sp-AlN(30 nm)/SCAM were considerably different from those of GaN/LT-GaN/FSS. Specifically, the edge-type dislocation density was approximately two orders of magnitude higher than the screw-/mixed-type dislocation density, i.e., the generation of screw-/mixed-type dislocation was suppressed through the replacement, unlike that of the GaN/LT-GaN/FSS. Next, to investigate the effect of replacement on the subsequent QW active layers, 580 nm emitting Ga0.70In0.30N/GaN QWs were grown on the u-GaN template layers. The IQEs of the samples were measured by means of temperature-dependent photoluminescence efficiency, and the results showed that the replacement improved the IQE at 300 K by approximately 1.8 times. We believe that the samples fabricated and described in the present study can provide a greater insight into future research directions for III-nitride light-emitting devices operating in yellow–red spectral regions.

Funder

Pukyong National University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3