Terrain Proxy-Based Site Classification for Seismic Zonation in North Korea within a Geospatial Data-Driven Workflow

Author:

Kim Han-SaemORCID,Sun Chang-GukORCID,Lee Moon-Gyo,Cho Hyung-IkORCID

Abstract

Numerous seismic activities occur in North Korea. However, it is difficult to perform seismic hazard assessment and obtain zonal data in the Korean Peninsula, including North Korea, when applying parametric or nonparametric methods. Remote sensing can be implemented for soil characterization or spatial zonation studies on irregular, surficial, and subsurface systems of inaccessible areas. Herein, a data-driven workflow for extracting the principal features using a digital terrain model (DTM) is proposed. In addition, geospatial grid information containing terrain features and the average shear wave velocity in the top 30 m of the subsurface (VS30) are employed using geostatistical interpolation methods; machine learning (ML)-based regression models were optimized and VS30-based seismic zonation in the test areas in North Korea were forecasted. The interrelationships between VS30 and terrain proxy (elevation, slope, and landform class) in the training area in South Korea were verified to define the input layer in regression models. The landform class represents a new proxy of VS30 and was subgrouped according to the correlation with grid-based VS30. The geospatial grid information was generated via the optimum geostatistical interpolation method (i.e., sequential Gaussian simulation (SGS)). The best-fitting model among four ML methods was determined by evaluating cost function-based prediction performance, performing uncertainty analysis for the empirical correlations of VS30, and studying spatial correspondence with the borehole-based VS30 map. Subsequently, the best-fitting regression models were designed by training the geospatial grid in South Korea. Then, DTM and its terrain features were constructed along with VS30 maps for three major cities (Pyongyang, Kaesong, and Nampo) in North Korea. A similar distribution of the VS30 grid obtained using SGS was shown in the multilayer perceptron-based VS30 map.

Funder

KIGAM

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3